Flytte gjennomsnitt Gjeldende gjennomsnitt Med konvensjonelle datasett er gjennomsnittlig verdi ofte den første, og en av de mest nyttige, oppsummerte statistikkene for å beregne. Når data er i form av en tidsserie, er seriemengden et nyttig mål, men reflekterer ikke dataens dynamiske natur. Gjennomsnittlige verdier som beregnes over kortere perioder, enten før den nåværende perioden eller sentrert i den nåværende perioden, er ofte mer nyttige. Fordi slike middelverdier vil variere, eller flytte, som den nåværende perioden beveger seg fra tid t 2, t 3. etc. er de kjent som bevegelige gjennomsnitt (Mas). Et enkelt glidende gjennomsnitt er (typisk) det uveide gjennomsnittet av k tidligere verdier. Et eksponentielt vektet glidende gjennomsnitt er i det vesentlige det samme som et enkelt glidende gjennomsnitt, men med bidrag til gjennomsnittet vektet av deres nærhet til gjeldende tid. Fordi det ikke er en, men en hel rekke bevegelige gjennomsnittsverdier for en gitt serie, kan settet Mas selv bli plottet på grafer, analysert som en serie, og brukes til modellering og prognoser. En rekke modeller kan bygges ved hjelp av bevegelige gjennomsnitt, og disse er kjent som MA-modeller. Hvis slike modeller er kombinert med autoregressive (AR) modeller, er de resulterende komposittmodellene kjent som ARMA - eller ARIMA-modeller (jeg er for integrert). Enkle bevegelige gjennomsnitt Siden en tidsserie kan betraktes som et sett med verdier, kan t 1,2,3,4, n gjennomsnittet av disse verdiene beregnes. Hvis vi antar at n er ganske stor, og vi velger et heltall k som er mye mindre enn n. vi kan beregne et sett med blokk gjennomsnitt eller enkle bevegelige gjennomsnitt (av rekkefølge k): Hvert mål representerer gjennomsnittet av dataverdiene over et intervall av k observasjoner. Merk at den første mulige MA for ordre k gt0 er den for t k. Mer generelt kan vi slippe det ekstra abonnementet i uttrykkene ovenfor og skrive: Dette sier at estimert gjennomsnitt på tidspunktet t er det enkle gjennomsnittet av den observerte verdien ved tid t og de foregående k -1-trinnene. Hvis det legges vekt på som reduserer bidraget til observasjoner som er lengre bort i tiden, sies det glidende gjennomsnittet å være eksponensielt jevnt. Flytende gjennomsnitt blir ofte brukt som en form for prognoser, hvorved estimert verdi for en serie på tiden t 1, S t1. er tatt som MA for perioden til og med tiden t. f. eks dagens estimat er basert på et gjennomsnitt av tidligere registrerte verdier fram til og med gårdager (for daglige data). Enkle bevegelige gjennomsnitt kan ses som en form for utjevning. I eksemplet som er vist nedenfor, er luftforurensningsdatasettet vist i introduksjonen til dette emnet blitt utvidet med en 7-dagers glidende gjennomsnittlig (MA) - linje, vist her i rødt. Som det ser ut, jevner MA-linjen ut toppene og troughene i dataene og kan være svært nyttig når det gjelder å identifisere trender. Standard forward-beregning formel betyr at de første k -1 datapunktene ikke har noen MA-verdi, men deretter utvider beregningene til det endelige datapunktet i serien. PM10 daglige gjennomsnittsverdier, Greenwich kilde: London Air Quality Network, londonair. org. uk En grunn til å beregne enkle bevegelige gjennomsnitt på måten som er beskrevet er at det gjør det mulig å beregne verdier for alle tidsluker fra tid tk frem til i dag, og Som en ny måling er oppnådd for tid t 1, kan MA for tid t 1 legges til settet som allerede er beregnet. Dette gir en enkel prosedyre for dynamiske datasett. Det er imidlertid noen problemer med denne tilnærmingen. Det er rimelig å argumentere for at gjennomsnittsverdien i løpet av de siste 3 periodene skal være plassert ved tidspunktet t -1, ikke tiden t. og for en MA over et jevnt antall perioder, bør det kanskje ligge midt mellom to tidsintervaller. En løsning på dette problemet er å bruke sentrale MA beregninger, der MA på tidspunktet t er gjennomsnittet av et symmetrisk sett med verdier rundt t. Til tross for det åpenbare meritter, er denne tilnærmingen ikke vanligvis brukt fordi det krever at data er tilgjengelig for fremtidige hendelser, noe som kanskje ikke er tilfelle. I tilfeller der analysen er helt av en eksisterende serie, kan bruk av sentrert Mas være å foretrekke. Enkle bevegelige gjennomsnitt kan betraktes som en form for utjevning, fjerne noen høyfrekvente komponenter i en tidsserie og markere (men ikke fjerne) trender på samme måte som det generelle begrepet digital filtrering. Faktisk er glidende gjennomsnitt en form for lineært filter. Det er mulig å bruke en bevegelig gjennomsnittsberegning til en serie som allerede har blitt utjevnet, dvs. utjevning eller filtrering av en allerede glatt serie. For eksempel, med et bevegelige gjennomsnitt på rekkefølge 2, kan vi betrakte det som beregnet ved hjelp av vekter, så MA ved x 2 0,5 x 1 0,5 x 2. På samme måte MA på x 3 0,5 x 2 0,5 x 3. Hvis vi bruk et andre nivå av utjevning eller filtrering, vi har 0,5 x 2 0,5 x 3 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 dvs. 2-trinns filtrering prosess (eller convolution) har produsert et variabelt vektet symmetrisk glidende gjennomsnitt, med vekter. Flere konvolutter kan produsere ganske komplekse vektede glidende gjennomsnitt, hvorav noen har blitt funnet å være særlig bruk i spesialiserte felt, som for eksempel i livsforsikringsberegninger. Flytte gjennomsnitt kan brukes til å fjerne periodiske effekter dersom det beregnes med periodikkets lengde som kjent. For eksempel, med månedlige data kan sesongvariasjoner ofte fjernes (hvis dette er målet) ved å bruke et symmetrisk 12-måneders glidende gjennomsnitt med alle månedene vektet like, bortsett fra det første og det siste som veies med 12. Dette skyldes at det vil være 13 måneder i den symmetriske modellen (nåværende tid, t. - 6 måneder). Summen er delt med 12. Lignende prosedyrer kan vedtas for en veldefinert periodicitet. Eksponentielt vektede glidende gjennomsnitt (EWMA) Med den enkle glidende gjennomsnittsformelen: Alle observasjoner er likevektede. Hvis vi kalte disse likevektene, alfa t. hver av k-vekter vil være lik 1 k. så summen av vektene ville være 1, og formelen ville være: Vi har allerede sett at flere applikasjoner av denne prosessen resulterer i at vektene varierer. Med eksponentielt vektede glidende gjennomsnitt blir bidraget til middelverdien fra observasjoner som er fjernet i tid, redusert, og derved legges vekt på nyere (lokale) hendelser. I hovedsak er en utjevningsparameter, 0lt al1l, introdusert, og formelen er revidert til: En symmetrisk versjon av denne formelen vil være av formen: Hvis vektene i den symmetriske modellen er valgt som betingelsene i betingelsene for binomial ekspansjonen, (1212) 2q. de vil summe til 1, og når q blir stor, vil omtrentlig normalfordelingen. Dette er en form for kjernevikting, med binomialet som kjernefunksjon. Den to-trinns konvolusjon som er beskrevet i det foregående avsnitt er nettopp dette arrangementet, med q 1, som gir vekter. Ved eksponensiell utjevning er det nødvendig å bruke et sett med vekter som summerer til 1 og som reduserer størrelsen geometrisk. Vektene som brukes er vanligvis av skjemaet: For å vise at disse vektene summerer til 1, vurder utvidelsen av 1 som en serie. Vi kan skrive og utvide uttrykket i parentes ved hjelp av binomialformelen (1- x) s. hvor x (1-) og p -1, som gir: Dette gir da en form for vektet glidende gjennomsnitt av skjemaet: Denne summeringen kan skrives som en tilbakevendingsrelasjon: som forenkler beregningen sterkt og unngår problemet at vektingsregimet bør strengt være uendelig for vektene til summen til 1 (for små verdier av alfa. dette er vanligvis ikke tilfelle). Notasjonen som brukes av ulike forfattere varierer. Noen bruker bokstaven S for å indikere at formelen er i hovedsak en glatt variabel, og skriv: mens kontrollteori litteraturen ofte bruker Z i stedet for S for eksponentielt vektede eller jevnte verdier (se for eksempel Lucas og Saccucci, 1990, LUC1 , og NIST-nettsiden for flere detaljer og arbeidede eksempler). Formlene som er nevnt ovenfor kommer fra Roberts arbeid (1959, ROB1), men Hunter (1986, HUN1) bruker et uttrykk for formen: som kan være mer hensiktsmessig for bruk i noen kontrollprosedyrer. Med alfa 1 er gjennomsnittlig estimering bare dens målte verdi (eller verdien av forrige datapost). Med 0,5 er estimatet det enkle glidende gjennomsnittet for nåværende og tidligere målinger. I prognosemodellene er verdien S t. brukes ofte som estimat eller prognoseverdi for neste tidsperiode, det vil si som estimatet for x på tidspunktet t 1. Dermed har vi: Dette viser at prognosen på tidspunktet t 1 er en kombinasjon av det forrige eksponentielt veide glidende gjennomsnittet pluss en komponent som representerer den veide prediksjonsfeilen, epsilon. på tidspunktet t. Forutsatt at en tidsserie er gitt og det kreves en prognose, er det nødvendig med en verdi for alfa. Dette kan estimeres fra eksisterende data ved å evaluere summen av kvadrert prediksjon feil oppnådd med varierende verdier av alfa for hver t 2,3. sette det første estimatet til å være den første observerte dataværdien, x 1. I kontrollapplikasjoner er verdien av alfa viktig, da den brukes til å bestemme de øvre og nedre kontrollgrensene, og påvirker den forventede gjennomsnittlige kjølelengde (ARL) før disse kontrollgrensene er brutt (under antagelsen om at tidsseriene representerer et sett av tilfeldige, identisk distribuerte uavhengige variabler med vanlig varians). Under disse forholdene er variansen av kontrollstatistikken: (Lucas og Saccucci, 1990): Kontrollgrenser settes vanligvis som faste multipler av denne asymptotiske variansen, f. eks. - 3 ganger standardavviket. Hvis f. eks. Alpha 0,25 og dataene som overvåkes antas å ha en Normal fordeling, N (0,1), når den er i kontroll, vil kontrollgrensene være - 1,134 og prosessen vil nå en eller annen grense i 500 trinn gjennomsnittlig. Lucas og Saccucci (1990 LUC1) utlede ARLene for et bredt spekter av alfaverdier og under ulike forutsetninger ved bruk av Markov Chain-prosedyrer. De tabulerer resultatene, inkludert å gi ARLer når gjennomsnittet av kontrollprosessen har blitt forskjøvet med noen flere av standardavviket. For eksempel, med en 0,5 skift med alfa 0,25 er ARL mindre enn 50 timers trinn. Tilnærmingene beskrevet ovenfor er kjent som enkelt eksponensiell utjevning. ettersom prosedyrene blir brukt en gang til tidsserien, og deretter utføres analyser eller kontrollprosesser på det resulterende glatte datasettet. Hvis datasettet inneholder en trend og sesongkomponenter, kan to - eller tre-trinns eksponensiell utjevning brukes som et middel til å fjerne (eksplisitt modellering) disse effektene (se videre avsnittet om prognose nedenfor og NIST-arbeidet). CHA1 Chatfield C (1975) Analyse av Times Series: Teori og praksis. Chapman og Hall, London HUN1 Hunter J S (1986) Det eksponentielt vektede glidende gjennomsnittet. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Eksponentielt vektede Flytte Gjennomsnittlige kontrollsystemer: Egenskaper og forbedringer. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Kontrolldiagramtester basert på geometriske bevegelige gjennomsnitt. Technometrics, 1, 239-250moving gjennomsnitt Gjennomsnitt av tidsserier data (observasjoner like fordelt i tid) fra flere sammenhengende perioder. Kalt flytting fordi det kontinuerlig omdannes når nye data blir tilgjengelige, går det fremover ved å slippe den tidligste verdien og legge til den nyeste verdien. For eksempel kan det bevegelige gjennomsnittet på seks måneders salg beregnes ved å ta gjennomsnittet av salget fra januar til juni, deretter gjennomsnittet av salget fra februar til juli, deretter fra mars til august og så videre. Flytte gjennomsnitt (1) redusere effekten av midlertidige variasjoner i data, (2) forbedre passformen til en linje (en prosess kalt utjevning) for å vise datasendensen tydeligere, og (3) markere en verdi over eller under trend. Hvis du regner med noe med svært høy varians, er det beste du kan gjøre, å finne ut det bevegelige gjennomsnittet. Jeg ønsket å vite hva det bevegelige gjennomsnittet var av dataene, så jeg ville få en bedre forståelse av hvordan vi gjorde. Når du prøver å finne ut noen tall som endrer seg ofte, er det beste du kan gjøre å beregne det bevegelige gjennomsnittet. Bollinger BandsMoving Averages: Hva er de Blant de mest populære tekniske indikatorene, er glidende gjennomsnitt brukt til å måle retningen for den nåværende trenden. Hver type bevegelige gjennomsnitt (vanligvis skrevet i denne opplæringen som MA) er et matematisk resultat som beregnes ved å beregne et antall tidligere datapunkter. Når det er bestemt, blir det resulterende gjennomsnittet plottet på et diagram for å tillate handelsmenn å se på glatt data, i stedet for å fokusere på de daglige prisfluktuasjonene som er iboende i alle finansmarkeder. Den enkleste formen for et bevegelige gjennomsnitt, riktig kjent som et enkelt glidende gjennomsnitt (SMA), beregnes ved å ta det aritmetiske gjennomsnittet av et gitt sett av verdier. For eksempel, for å beregne et grunnleggende 10-dagers glidende gjennomsnitt vil du legge til sluttkursene fra de siste 10 dagene, og deretter dele resultatet med 10. I figur 1 er summen av prisene for de siste 10 dagene (110) dividert med antall dager (10) for å komme fram til 10-dagers gjennomsnittet. Hvis en forhandler ønsker å se et 50-dagers gjennomsnitt i stedet, vil samme type beregning bli gjort, men det vil inkludere prisene i løpet av de siste 50 dagene. Det resulterende gjennomsnittet under (11) tar hensyn til de siste 10 datapunktene for å gi handelsmenn en ide om hvordan en eiendel er priset i forhold til de siste 10 dagene. Kanskje du lurer på hvorfor tekniske handelsfolk kaller dette verktøyet et bevegelige gjennomsnitt og ikke bare en vanlig gjennomsnitt. Svaret er at når nye verdier blir tilgjengelige, må de eldste datapunktene slippes fra settet og nye datapunkter må komme inn for å erstatte dem. Dermed går datasettet kontinuerlig til å regne for nye data etter hvert som det blir tilgjengelig. Denne beregningsmetoden sikrer at bare den nåværende informasjonen blir regnskapsført. I figur 2 flyttes den røde boksen (som representerer de siste 10 datapunktene) til høyre, og den siste verdien av 15 blir tapt fra beregningen når den nye verdien av 5 er lagt til settet. Fordi den relativt små verdien av 5 erstatter den høye verdien på 15, ville du forvente å se gjennomsnittet av datasettets reduksjon, som det gjør, i dette tilfellet fra 11 til 10. Hva ser Moving Averages Like Når verdiene til MA har blitt beregnet, de er plottet på et diagram og deretter koblet til for å skape en bevegelig gjennomsnittslinje. Disse svingete linjene er vanlige på diagrammer av tekniske handelsfolk, men hvordan de brukes kan variere drastisk (mer om dette senere). Som du kan se i figur 3, er det mulig å legge til mer enn ett glidende gjennomsnitt i et diagram ved å justere antall tidsperioder som brukes i beregningen. Disse svingete linjene kan virke distraherende eller forvirrende i begynnelsen, men du vil bli vant til dem når tiden går videre. Den røde linjen er bare gjennomsnittsprisen de siste 50 dagene, mens den blå linjen er gjennomsnittsprisen de siste 100 dagene. Nå som du forstår hva et glidende gjennomsnitt er, og hvordan det ser ut, kan du godt presentere en annen type glidende gjennomsnitt og undersøke hvordan det er forskjellig fra det tidligere nevnte enkle glidende gjennomsnittet. Det enkle glidende gjennomsnittet er ekstremt populært blant handelsfolk, men som alle tekniske indikatorer har det kritikere. Mange individer hevder at bruken av SMA er begrenset fordi hvert punkt i dataserien vektes det samme, uavhengig av hvor det forekommer i sekvensen. Kritikere hevder at de nyeste dataene er mer signifikante enn de eldre dataene, og bør ha større innflytelse på sluttresultatet. Som svar på denne kritikken begynte handelsmenn å gi mer vekt på nyere data, som siden har ført til oppfinnelsen av ulike typer nye gjennomsnitt, hvorav den mest populære er det eksponentielle glidende gjennomsnittet (EMA). (For videre lesing, se Grunnleggende om vektede bevegelige gjennomsnitt og hva som er forskjellen mellom en SMA og en EMA) Eksponentiell flytende gjennomsnitt Det eksponentielle glidende gjennomsnittet er en type bevegelige gjennomsnitt som gir mer vekt til de siste prisene i et forsøk på å gjøre det mer responsivt til ny informasjon. Å lære den noe kompliserte ligningen for å beregne en EMA kan være unødvendig for mange forhandlere, siden nesten alle kartleggingspakker gjør beregningene for deg. Men for deg matematiske geeks der ute, her er EMA-ligningen: Når du bruker formelen til å beregne det første punktet til EMA, kan det hende du merker at det ikke er noen verdi tilgjengelig for bruk som den forrige EMA. Dette lille problemet kan løses ved å starte beregningen med et enkelt glidende gjennomsnitt og fortsette videre med den ovennevnte formelen derfra. Vi har gitt deg et eksempelkart som inneholder virkelige eksempler på hvordan du kan beregne både et enkelt glidende gjennomsnitt og et eksponentielt glidende gjennomsnitt. Forskjellen mellom EMA og SMA Nå som du har en bedre forståelse av hvordan SMA og EMA beregnes, kan vi se på hvordan disse gjennomsnittene er forskjellige. Ved å se på beregningen av EMA, vil du legge merke til at det legges større vekt på de siste datapunktene, noe som gjør det til en type vektet gjennomsnitt. I figur 5 er antall tidsperioder som brukes i hvert gjennomsnitt identisk (15), men EMA reagerer raskere på de endrede prisene. Legg merke til hvordan EMA har en høyere verdi når prisen stiger, og faller raskere enn SMA når prisen senker. Denne responsen er den viktigste grunnen til at mange handelsmenn foretrekker å bruke EMA over SMA. Hva betyr de forskjellige dagene Gjennomsnittlig flytteverdi er en helt tilpassbar indikator, noe som betyr at brukeren fritt kan velge hvilken tidsramme de vil ha når man lager gjennomsnittet. De vanligste tidsperioder som brukes i bevegelige gjennomsnitt er 15, 20, 30, 50, 100 og 200 dager. Jo kortere tidsrammen som brukes til å skape gjennomsnittet, jo mer følsomt blir det for prisendringer. Jo lengre tidsrom, jo mindre følsomt, eller mer utjevnet, vil gjennomsnittet være. Det er ingen riktig tidsramme som skal brukes når du oppretter dine bevegelige gjennomsnitt. Den beste måten å finne ut hvilken som passer best for deg, er å eksperimentere med en rekke forskjellige tidsperioder til du finner en som passer til din strategi. Metode for bevegelige gjennomsnitt Kommentarer er slukket Anta at det er tidsperioder som er betegnet og tilsvarende verdier av variabel er. Først av alt må vi bestemme perioden for de bevegelige gjennomsnittene. For korte tidsserier bruker vi periode på 3 eller 4 verdier. For lang tidsserier kan perioden være 7, 10 eller mer. For kvartalsvise tidsserier beregner vi alltid gjennomsnitt som tar 4 fjerdedeler av gangen. I månedlige tidsserier beregnes 12 måneders glidende gjennomsnitt. Anta at gitte tidsserier er i år, og vi har bestemt oss for å beregne 3 års glidende gjennomsnitt. De bevegelige gjennomsnittene som er oppgitt, beregnes som nedenfor:
No comments:
Post a Comment